
Overshadow:
Retrofitting Protection in Commodity Operating Systems

Tal Garfinkel
VMware Advanced Development

Stanford Security Forum
March 17, 2008

Mike Chen Tal Garfinkel E. Christopher Lewis
Pratap Subrahmanyam Carl Waldspurger

VMware, Inc.

Dan Boneh Jeffrey Dwoskin Dan R.K. Ports
Stanford Princeton MIT

2Copyright © 2008 VMware, Inc. All rights reserved.

Our Problem: Commodity Systems, Sensitive Data

Many Applications Handle Sensitive Data
Financial, medical, insurance, military …
Credit cards, medical records, corporate IP …

Run on Commodity Systems
Large and complex TCB, broad attack surfaces
OS kernel, file system, daemons, services …
Hard to configure, manage, maintain

Why rely on all this, when we only care about our application?

3Copyright © 2008 VMware, Inc. All rights reserved.

Our Hammer: The Virtual Machine Monitor

Hardware-Level Abstraction
Virtual hardware: processors, memory,
chipset, I/O devices, etc.

Encapsulates all OS and application
state

Extra level of indirection
decouples hardware and OS

Where Overshadow Sits
Interpose at the CPU/Memory Interface
to add new protection mechanism

4Copyright © 2008 VMware, Inc. All rights reserved.

Our Goals

Protect Individual Application Data
Privacy and integrity
In memory and on disk

Get OS out of Trusted Computing Base
Only have to trusted application code
Last line of defense

Backwards Compatibility
Unmodified commodity OS
Unmodified application binary

Non-Goal: Availability

5Copyright © 2008 VMware, Inc. All rights reserved.

Outline

E2E Architecture
Memory Cloaking
Secure Control Transfer
Implementation
Conclusions

6Copyright © 2008 VMware, Inc. All rights reserved.

E2E: Big Picture

Application Data Protected
On disk

In memory while running

Cloaking: Two Views of Memory
App sees normal view

OS sees encrypted view

App/OS Interactions
Mediated by “shim”

Interposes on system calls,
interrupts, faults, signals

Transparent to application

Cloaked App

Legacy OS Kernel

Cloaked Shim

VMM

Hardware

Other AppsOther AppsApps

Uncloaked Shim

Two Virtualization Barriers

7Copyright © 2008 VMware, Inc. All rights reserved.

E2E: Setting Up a Protected App

Application files
.exe

.txt
.dll

Encrypted Files

Metadata (IV/Hash)

Protected App

Your Virtual Machine

8Copyright © 2008 VMware, Inc. All rights reserved.

E2E: Running a Protected App

1. Trusted Loader is invoked run (checked by VMM) to
start app

2. Loader memory maps app code
3. Application code/data is encrypted/decrypted on

demand.
4. VMM Provides context dependant view of process

memory.
OS Page Table
(ciphertext)

App Page Table
(clear text)

9Copyright © 2008 VMware, Inc. All rights reserved.

E2E: Running a Protected App

1. Trusted Loader is invoked run (checked by VMM) to
start app

2. Loader memory maps app code
3. Application code/data is encrypted/decrypted on

demand.
4. VMM Provides context dependant view of process

memory.
OS Page Table
(ciphertext)

App Page Table
(clear text)

10Copyright © 2008 VMware, Inc. All rights reserved.

E2E: Protecting Application Resources

Basic Strategy
Protect existing memory-mapped objects
e.g. stack, heap, mapped files, shared mmaps

Make everything else look like a memory mapped object
e.g. open() becomes mmap(), read()/write() becomes memcpy()

VMM Provides Memory Isolation

OS Still Manages (Encrypted) Application Resources
Including demand-paged application memory

Moves cloaked data without seeing plaintext contents

Encryption/decryption typically infrequent

11Copyright © 2008 VMware, Inc. All rights reserved.

E2E: Supporting Unmodified Applications

Problem: Doesn’t look like normal ABI
Examples: Modified control transfers between OS

and app, OS can’t access app address space
directly

Solution: Shim
Loaded into application address space

Communicates with VMM via hypercalls

Interposes on system calls, signals, etc.

Cloaked App

Legacy OS Kernel

Cloaked Shim

VMM

Hardware

Other AppsOther AppsApps

Uncloaked Shim

Protected Process

12Copyright © 2008 VMware, Inc. All rights reserved.

Outline

E2E Architecture
Memory Cloaking
Secure Control Transfer
Implementation
Conclusions

13Copyright © 2008 VMware, Inc. All rights reserved.

Memory Mapping: OS

virtual physical

OS page table

14Copyright © 2008 VMware, Inc. All rights reserved.

Memory Mapping: VMM

virtual physical machine

guest OS vmm

15Copyright © 2008 VMware, Inc. All rights reserved.

Multi-Shadowing: Context-Dependent Views

virtual physical

machine1

guest OS
view2

view1

machine2

16Copyright © 2008 VMware, Inc. All rights reserved.

Cloaking: Multi-Shadowing + Cryptography

virtual physical

plaintext

guest OS sys
view

app
view

X
unmapped

machine

17Copyright © 2008 VMware, Inc. All rights reserved.

Cloaking: System Accesses Page

virtual physical

guest OS sys
view

app
view

X
Unmapped

encrypted

Fault into VMM: encrypt/hash contents, remap

18Copyright © 2008 VMware, Inc. All rights reserved.

Cloaking: Application Accesses Page

virtual physical

guest OS sys
view

app
view

Fault into VMM: verify hash, decrypt, remap

X
unmapped

plaintext
machine

19Copyright © 2008 VMware, Inc. All rights reserved.

Protecting Data Integrity

Challenges
Enforce integrity, ordering, freshness

VMM Manages Per-Page Metadata
Tracks what’s “supposed to be” in each memory page

E.g. infer based on mmap()

IV – randomly-generated initialization vector

H – secure integrity hash

See paper for more…

20Copyright © 2008 VMware, Inc. All rights reserved.

Outline

E2E Architecture
Memory Cloaking
Secure Control Transfer
Implementation
Conclusions

21Copyright © 2008 VMware, Inc. All rights reserved.

Secure Control Transfer

Problem: Can’t let OS tranfer control to arbitrary place in
app (with arbitrary registers).

Solution: Enforce control transfer protocol.
Implicit: Faults/Premption
Explicit: System Calls

22Copyright © 2008 VMware, Inc. All rights reserved.

Shim: Handling Faults and Interrupts

1. App is executing
2. Fault traps into VMM

Saves and scrubs registers
Sets up trampoline to shim
Transfers control to kernel

3. Kernel executes
Handles fault as usual
Returns to shim via trampoline

4. Shim hypercalls into VMM
Resume cloaked execution

5. VMM returns to app
Restores registers
Transfers control to app

23Copyright © 2008 VMware, Inc. All rights reserved.

Shim: Handling System Calls

Extra Transitions
Superset of fault handling

Handlers in cloaked shim
interpose on system calls

System Call Adaptation
Arguments may be pointers
to cloaked memory

Marshall and unmarshall
via buffer in uncloaked shim

More complex: pipes,
signals, fork, file I/Omarshallunmarshall

24Copyright © 2008 VMware, Inc. All rights reserved.

Outline

E2E Architecture
Memory Cloaking
Secure Control Transfer
Implementation
Future Work
Related Work
Conclusions

25Copyright © 2008 VMware, Inc. All rights reserved.

Implementation

Overshadow System
Based on 32-bit x86 VMware VMM

Shim for Linux 2.6.x guest OS

Full cloaking of application code, data, files

Lines of code: + 6600 to VMM, ~ 13100 in shim

Not heavily optimized

Runs Real Applications
Apache web server, PostgreSQL database

Emacs, bash, perl, gcc, …

26Copyright © 2008 VMware, Inc. All rights reserved.

Microbenchmark Performance

System Calls
Simple PASSTHRU

MARSHALL args

Processes
FORKW – fork/wait
process creation,
COW overheads

File-Backed mmaps
MMAPW – write word
per page, flush to disk

MMAPR – read words
back from buffer cache

0

20

40

60

80

100

PASSTHRU MARSHALL FORKW MMAPW MMAPR

%
 U

nc
lo

ak
ed

 P
er

fo
rm

an
ce

27Copyright © 2008 VMware, Inc. All rights reserved.

Benchmark Performance

Web
Apache web server
caching disabled

Remote load generator
ab benchmark tool

Database
PostgresSQL server
DBT2 benchmark

Compute
SPECint CPU2006

gcc – worst individual
SPEC benchmark

0

20

40

60

80

100

Apache DBT2 SPEC gcc

Full Cloaking Without File Cloaking

%
 U

nc
lo

ak
ed

 P
er

fo
rm

an
ce

28Copyright © 2008 VMware, Inc. All rights reserved.

Conclusions

Promising New Approach
VM-based protection of application data

Privacy and integrity, even if OS compromised

Backwards compatible

Powerful New Mechanisms
Multi-shadow memory cloaking

Shim allows transparent ABI modification

Future Directions
Security implications of a malicious OS

Additional uses of Cloaking

29Copyright © 2008 VMware, Inc. All rights reserved.

Questions?

For More Information
Read the paper

See ASPLOS 08 Proceedings

Google: $MY_NAME

Send feedback to mailing list
overshadow@vmware.com

mailto:overshadow@vmware.com

30Copyright © 2008 VMware, Inc. All rights reserved.

Backup Slides

31Copyright © 2008 VMware, Inc. All rights reserved.

What is a Virtual Machine?

Hardware-Level Abstraction
Virtual hardware: processors,
memory, chipset, I/O devices, etc.

Encapsulates all OS and
application state

Virtualization Software
Extra level of indirection
decouples hardware and OS

Multiplexes physical hardware
across multiple “guest” VMs

Strong isolation between VMs

Manages physical resources,
improves utilization

32Copyright © 2008 VMware, Inc. All rights reserved.

Basic Cloaking Protocol

State Transition Diagram
Single cloaked page

Privacy and integrity

Single Page, Two Views
App (A) sees plaintext
via application shadow

Kernel (K) sees ciphertext
via system shadow

Protection Metadata
IV – randomly-generated
initialization vector

H – secure hash

33Copyright © 2008 VMware, Inc. All rights reserved.

Secure Context Identification

Application Contexts
Must identify uniquely to switch shadow page tables

Must work even with adversarial OS

Shim-Based Approach
Cloaked Thread Context (CTC) in cloaked shim

Initialized at startup to contain ASID and random value

Random value is protected in cloaked memory

Transitions from uncloaked to cloaked execution
use self-identifying hypercalls with pointer to CTC

VMM verifies expected ASID and random value in CTC

34Copyright © 2008 VMware, Inc. All rights reserved.

Cloaked File I/O

Interpose on I/O System Calls
Read, write, lseek, fstat, etc.

Uncloaked files use simple marshalling

Cloaked Files
Emulate read and write using mmap

Copy data to/from memory-mapped buffers

Decrypted automatically when read by app;
Encrypted automatically when flushed to disk by kernel

Shim caches mapped file regions (1MB chunks)

Prepend file header containing size, offset, etc.

35Copyright © 2008 VMware, Inc. All rights reserved.

Protection Metadata: Overview

Per-Page Metadata
Required to enforce privacy, integrity, ordering, freshness

IV – randomly-generated initialization vector

H – secure integrity hash

Tracked by VMM
Metadata for pages mapped into application address space

Intuitively, what’s “supposed” to be in each memory page

(ASID, GVPN) → (IV, H)

36Copyright © 2008 VMware, Inc. All rights reserved.

Protection Metadata: Details

Protected Resource
Need indirection to support sharing and persistence
(RID, RPN) – unique resource identifer, page offset
Ordered set of (IV, H) pairs in VMM “metadata cache”

Protected Address Space
Shim tracks mappings (start, end) → (RID, RPN)
VMM caches in “metadata lookaside buffer”
VMM upcalls into shim on MLB miss

Metadata Lookup
(ASID, VPN) → (RID, RPN) → (IV, H)
Persistent metadata stored securely in guest filesystem

37Copyright © 2008 VMware, Inc. All rights reserved.

Managing Protection Metadata

38Copyright © 2008 VMware, Inc. All rights reserved.

Q: Can OS Modify or Inject Application Code?

Answer: No.
Application code resides in cloaked memory;
it’s encrypted and integrity-protected.

Any modifications will be detected by integrity checks;
modified page contents won’t match hash in MDC.

39Copyright © 2008 VMware, Inc. All rights reserved.

Q: Can OS Modify Application Instruction Pointer?

Answer: No.
Application registers, including the instruction pointer (IP),
are saved in the cloaked thread context (CTC) after all
faults/interrupts/syscalls, and restored when cloaked
execution resumes.

The CTC resides in cloaked memory; it’s encrypted and
integrity-protected, so the OS can’t read or modify it.

40Copyright © 2008 VMware, Inc. All rights reserved.

Q: Can OS Tamper with Loader?

Answer: No.
Before entering cloaked execution, the VMM can verify that the
shim was loaded properly by comparing hashes of the
appropriate memory pages with their expected values.

If this integrity check fails, it will prevent the application from
accessing any cloaked resources (files or memory), except in
encrypted form.

So while the OS could execute an arbitrary program instead, it
would be unable to access any protected data.

41Copyright © 2008 VMware, Inc. All rights reserved.

Q: Can OS Pretend to Be Application and
Issue “Resume Cloaked Exec” Hypercall?

Answer: Yes, but it can’t execute malicious code.
When an application returns from a context switch or other
interrupt, the uncloaked shim makes a hypercall asking the VMM
to resume cloaked execution.
The OS could pretend to be the application, and make this same
hypercall, but integrity checking will cause it to fail unless the
CTC is mapped in the proper location.
Even if the OS succeeds, the VMM will enter cloaked execution
with the proper saved registers, including the IP. All application
pages must be unaltered or integrity checks will fail.
Thus, the OS can only cause cloaked execution to be resumed
at the proper point in the proper application code, so it still can’t
execute malicious code.

42Copyright © 2008 VMware, Inc. All rights reserved.

More Backup Slides

43Copyright © 2008 VMware, Inc. All rights reserved.

Motivation: Vulnerable Systems

Many Applications Handle Sensitive Data
Financial, medical, insurance, military …
Credit cards, medical records, corporate IP …

Yet Trust Commodity Systems
Large and complex TCB, broad attack surfaces
OS kernel, file system, daemons, services …
Hard to configure, manage, maintain

Example: Database Server
Containing all sorts of sensitive information
Secure, but runs on commodity OS
Game over if attacker becomes root (e.g. via /dev/mem)

44Copyright © 2008 VMware, Inc. All rights reserved.

Review: Virtual Memory

Traditional OS Approach
Level of Indirection

Virtual → Physical

OS page table maps
VPN (virtual page number) to
PPN (physical page number)

Cached by hardware TLB

VPN

PPN

hardware
TLB

OS
page
table

45Copyright © 2008 VMware, Inc. All rights reserved.

Classical Memory Virtualization

Traditional VMM Approach
Extra Level of Indirection

Virtual → Physical
Guest OS page table maps
GVPN (virtual page number) to
GPPN (physical page number)

Physical → Machine
VMM maps GPPN to MPN

Shadow Page Table
Composite of two mappings

Directly maps GVPN to MPN

Cached by hardware TLB

GVPN

GPPN

MPN

hardware
TLB

shadow
page table

guest

VMM

46Copyright © 2008 VMware, Inc. All rights reserved.

Multi-Shadowing Primitive

New Way to Leverage VMM
Multiple Views of Memory

GPPN maps to multiple MPNs

Using multiple shadow page tables

View depends on “context”
accessing page

General Mechanism
Orthogonal to protection domains
defined by OS and processor

Enables new protection schemes

GVPN

GPPN
shadow
context 2

MPN1 MPN2

shadow
context 1

47Copyright © 2008 VMware, Inc. All rights reserved.

Cloaking: Multi-Shadowing + Cryptography

Single Page, Dual Views
GPPN maps to single MPN

Encrypt/decrypt MPN contents dynamically

Hash encrypted contents to protect integrity

Access to Cloaked Page
By kernel: encrypt, generate hash, update shadow mappings

By app: verify integrity hash, decrypt, update shadow mappings

Responsibilities
OS manages application resources (without seeing contents)

VMM manages protection (including metadata and keys)

48Copyright © 2008 VMware, Inc. All rights reserved.

Cloaking OS Resources

Page-Oriented Protection
Using low-level cloaking primitive

Building block for higher-level OS abstractions

Memory-Mapped Objects in Modern OS
Private process memory: stack, heap …

File-backed memory: code regions, mmaps …

Shared memory: fork, shared mmaps …

Basic Strategy
Protect existing memory-mapped objects

Make everything else look like one

49Copyright © 2008 VMware, Inc. All rights reserved.

Shim: Supporting Unmodified Applications

What’s a Shim?
OS-specific user-level program
Linked into application address space
Separate cloaked and uncloaked regions
Communicates with VMM via hypercalls

Functionality
Extends reach of VMM to applications
Interposes on privilege-mode transitions
Secure context identification and control transfer
Tracks application resources
Adapts system calls

50Copyright © 2008 VMware, Inc. All rights reserved.

Protection Metadata

Protected Resource
Ordered set of pages
Portions mapped into application address space
May be persistent or transient

Per-Page Metadata
Required to enforce privacy, integrity, ordering, freshness
IV – randomly-generated initialization vector
H – secure integrity hash

Managed by VMM
Tracks what’s “supposed to be” in each memory page
Shim helps VMM map GVPN → (IV, H)

51Copyright © 2008 VMware, Inc. All rights reserved.

Shim: Handling Faults and Interrupts

1. App is executing
2. Fault traps into VMM

Saves and scrubs registers
Sets up trampoline to shim
Transfers control to kernel

3. Kernel executes
Handles fault as usual
Returns to shim via trampoline

4. Shim hypercalls into VMM
Self-identifying hypercall to
resume cloaked execution

5. VMM returns to app
Restores regs
Transfers control to app

	Overshadow: �Retrofitting Protection in Commodity Operating Systems
	Our Problem: Commodity Systems, Sensitive Data
	Our Hammer: The Virtual Machine Monitor
	Our Goals
	Outline
	E2E: Big Picture
	E2E: Setting Up a Protected App
	E2E: Running a Protected App
	E2E: Running a Protected App
	E2E: Protecting Application Resources
	E2E: Supporting Unmodified Applications
	Outline
	Memory Mapping: OS
	Memory Mapping: VMM
	Multi-Shadowing: Context-Dependent Views
	Cloaking: Multi-Shadowing + Cryptography
	Cloaking: System Accesses Page
	Cloaking: Application Accesses Page
	Protecting Data Integrity
	Outline
	Secure Control Transfer
	Shim: Handling Faults and Interrupts
	Shim: Handling System Calls
	Outline
	Implementation
	Microbenchmark Performance
	Benchmark Performance
	Conclusions
	Questions?
	Backup Slides
	What is a Virtual Machine?
	Basic Cloaking Protocol
	Secure Context Identification
	Cloaked File I/O
	Protection Metadata: Overview
	Protection Metadata: Details
	Managing Protection Metadata
	Q: Can OS Modify or Inject Application Code?
	Q: Can OS Modify Application Instruction Pointer?
	Q: Can OS Tamper with Loader?
	Q: Can OS Pretend to Be Application and � Issue “Resume Cloaked Exec” Hypercall?
	More Backup Slides
	Motivation: Vulnerable Systems
	Review: Virtual Memory
	Classical Memory Virtualization
	Multi-Shadowing Primitive
	Cloaking: Multi-Shadowing + Cryptography
	Cloaking OS Resources
	Shim: Supporting Unmodified Applications
	Protection Metadata
	Shim: Handling Faults and Interrupts

